Chemical Bonding Theory
An explanation for observed chemical and spectroscopic behavior

Items to explain
1. Polarity of bonds
 • IR spectroscopy
 • NMR chemical shifts
2. Electrochemistry
 • Oxidation and reduction potentials lower with conjugation
3. UV spectroscopy
 • Alkanes don’t absorb well
 • Conjugation increases λ_{max}
 • Benzene (178 nm) vs. 2,4-hexadiene (240 nm)

Descriptions of Bonding
• Molecular orbital theory
 – Delocalized electrons
 – More difficult to conceive and present
 – “Hydrogen-like Atomic Orbitals” are used to form Molecular Orbitals
• Valence-bond theory
 – Localized electrons
 – Convenient for presentation
 – “Hybrid Atomic Orbitals” are used to form “independent” Valence Bonds

Atomic Orbitals
Atomic Orbitals

Molecular Orbital Theory: H_2

\[\text{H} - \text{H} = \text{H} \text{ H} \]

\[\text{H} + \text{H} = \text{H} \text{ H} \]
Molecular Orbital Theory: Ethene

- Molecular orbital theory
 - Delocalized electrons
 - More difficult to conceive and present
 - "Hydrogen-like Atomic Orbitals" are used to form Molecular Orbitals

- Valence-bond theory
 - Localized electrons
 - Convenient for presentation
 - "Hybrid Atomic Orbitals" are used to form "independent" Valence Bonds
Valence-bond Theory: H_2

\[H_2 + H_2 = H-H \]

Pictorial VB Theory: sp Hybrids

\[\text{Pictorial VB Theory: sp Hybrids} \]

\[\text{animation} \]

Pictorial VB Theory: sp^2 Hybrids

\[\text{Pictorial VB Theory: sp}^2 \text{ Hybrids} \]

\[\text{animation} \]
This is the carbon-carbon σ (sigma) bond only.
Pictorial VB Theory: Ethene

- This is the carbon-carbon $\sigma + \pi$ (sigma + pi) bonding combination only

Sigma and pi bonding in ethane, ethylene, and acetylene

- Unhybridized $2e$ orbitals
- The other π bond