Conjugation and the values of electronic energy transitions

What's an "electronic energy transition"?

- When electrons move between energy levels ("orbitals") in an atom or molecule, they either emit or absorb energy.
- The jump is often called an "electronic energy transition" or just a "transition."
- The energy emitted or absorbed is in the UV/VIS range.

Electronic transitions
 in molecules with π-orbitals

- There are two types of transitions that are important in UV/VIS spectroscopy
- $\pi \rightarrow \pi^{*}$ (bonding to antibonding)
- $\mathrm{n} \rightarrow \pi^{*}$ (non-bonding to antibonding)
- Other transitions are possible but are typically so highenergy as to not be observed

$\pi \longrightarrow \pi *$

$\mathrm{n} \longrightarrow \pi *$

Electronic transitions in molecules with π-orbitals

- Non-bonding molecular orbitals will be higher in energy than bonding ones
- Therefore $\mathrm{n} \rightarrow \pi^{*}$ transitions will be lower in energy than $\mathrm{n} \rightarrow \pi^{*}$ transitions in similar molecules
- Therefore conjugated molecules with non-bonding electrons will be more highly colored than similar molecules without them

$\lambda-\max =290 \mathrm{~nm}$
$\lambda-\max =350 \mathrm{~nm}$

Electronic transitions in molecules with π-orbitals

$\lambda-\max =295$

White in color

$\lambda-\max =325 \pi \longrightarrow \pi *$
$\lambda-\max =440 \mathrm{n} \longrightarrow \pi^{*}$

Yellow in color

Conjugation and λ-max

- The energy of light absorbed is a function of the energy distance between the HOMO (π or n) and the LUMO (π^{*})
- As we have seen, conjugation lowers that energy gap by providing more molecular orbitals to fit into a similar energy space

Compare butadiene

 and hexatriene

Conjugation in polycyclic aromatic compounds

- Adding rings gives a longer λ-max
- Arrangements that allow more "benzenoid" rings will have a shorter λ-max
- This is because extra benzenoid rings means the molecule is more stable

a benzenoid ring

Compare phenanthrene with anthracene

Phenanthrene
2 benzenoid rings
$\lambda-\mathrm{max}=250 \mathrm{~nm}$

Anthracene
1 benzenoid ring
$\lambda-\max =345,360 \mathrm{~nm}$

