We can use bonding theories to explain reactions and reactivity

- Lewis structures allow us to "push electrons" but explain little
- Valence bond theory allows us to use Lewis structures in a natural way, bringing in "resonance," "hybridization" and "orbital overlap."
- Molecular orbital theory allows us to explain how bonds are formed and broken by donation of electrons from a HOMO to a LUMO

Solvent	Structure	Abbreviation	Dielectric constant (ɛ, at 25 °C)	Boiling point (°C)
Protic solvents				
Water	H ₂ O	-	79	100
Formic acid	HCOOH	_	59	100.6
Methanol	CH ₃ OH	MeOH	33	64.7
Ethanol	CH ₃ CH ₂ OH	EtOH	25	78.3
tert-Butyl alcohol	(CH ₃) ₃ COH	tert-BuOH	11	82.3
Acetic acid	CH ₃ COOH	HOAc	6	117.9
Aprotic solvents				
Dimethyl sulfoxide	(CH ₃) ₂ SO	DMSO	47	189
Acetonitrile	CH ₃ CN	MeCN	38	81.6
Dimethylformamide	(CH ₃) ₂ NCHO	DMF	37	153
Hexamethylphosphoric acid triamide	[(CH ₃) ₂ N] ₃ PO	HMPA	30	233
Acetone	(CH ₃) ₂ CO	Me ₂ CO	21	56.3
Dichloromethane	CH ₂ Cl ₂	—	9.1	40
Tetrahydrofuran	$\langle \rangle$	THF	7.6	66
Ethyl acetate	CH ₃ COOCH ₂ CH ₃	EtOAc	6	77.1
Diethyl ether	CH ₃ CH ₂ OCH ₂ CH ₃	Et ₂ O	4.3	34.6
Benzene	\bigcirc		2.3	80.1
Hexane	CH ₃ (CH ₂) ₄ CH ₃		1.9	68.7

