





| Spin quan                             | tum              | nun     | nber            | s an            | d all           | owe             | d nu            | clear           |
|---------------------------------------|------------------|---------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| spin states                           | s for            | sel     | ecte            | d isc           | otop            | es of           | eler            | ment            |
| common to                             | o or             | ganı    | c co            | ompo            | ound            | S               |                 |                 |
| Element                               | $^{1}\mathrm{H}$ | $^{2}H$ | <sup>12</sup> C | <sup>13</sup> C | <sup>14</sup> N | <sup>16</sup> O | <sup>31</sup> P | <sup>32</sup> S |
| nuclear spin<br>quantum<br>number (I) | 1/2              | 1       | 0               | 1/2             | 1               | 0               | 1/2             | 0               |
| number of                             | 2                | 3       | 1               | 2               | 3               | 1               | 2               | 1               |





















## **Chemical Shift**

- The circulation of electrons around a nucleus in an applied field is called diamagnetic current and the nuclear shielding resulting from it is called diamagnetic shielding.
- The difference in resonance frequencies among the various hydrogen or carbon nuclei within a molecule due to shielding or deshielding is generally very small.



















| Cher<br>Elect                     | Chemical Shift:<br>Electronegativity effects |                     |  |  |  |  |
|-----------------------------------|----------------------------------------------|---------------------|--|--|--|--|
| CH <sub>3</sub> -X                | Electroneg-<br>ativity of X                  | δ of H              |  |  |  |  |
| CH <sub>3</sub> F                 | 4.0                                          | 4.26                |  |  |  |  |
| CH <sub>3</sub> OH                | 3.5                                          | 3.47                |  |  |  |  |
| CH <sub>3</sub> CI                | 3.1                                          | 3.05                |  |  |  |  |
| CH <sub>3</sub> Br                | 2.8                                          | 2.68                |  |  |  |  |
| CH <sub>3</sub> I                 | 2.5                                          | 2.16                |  |  |  |  |
| (CH <sub>3</sub> ) <sub>4</sub> C | 2.1                                          | 0.86                |  |  |  |  |
| $(CH_3)_4$ Si                     | 1.8                                          | 0.00 (by definition |  |  |  |  |

| Chemical Shift:<br>Hybridization effects |            |                |  |  |  |  |
|------------------------------------------|------------|----------------|--|--|--|--|
| Type of <sup>1</sup> H                   | Name       | Chemical shift |  |  |  |  |
| R-CH <sub>2</sub> –H                     | methyl     | 0.8-1.0        |  |  |  |  |
| R <sub>2</sub> CH–H                      | methylene  | 1.2-1.4        |  |  |  |  |
| R₃C–H                                    | methyne    | 1.4-1.7        |  |  |  |  |
| RC≡C–H                                   | acetylenic | 2.0-3.0        |  |  |  |  |
| R₂C=CR−H                                 | vinylic    | 4.5-6.0        |  |  |  |  |
| Ar–H                                     | aromatic   | 6.5-8.0        |  |  |  |  |
|                                          |            |                |  |  |  |  |



| Chemical Shift:<br>adjacent π bonds             |                                |  |  |  |
|-------------------------------------------------|--------------------------------|--|--|--|
| CH <sub>3</sub> -X                              | <sup>13</sup> C chemical shift |  |  |  |
| CH <sub>3</sub> -C <sub>6</sub> H <sub>13</sub> | 14.0                           |  |  |  |
| CH₃-Ph                                          | 20.9                           |  |  |  |
| CH₃-CH=CH-Ph                                    | 16.6                           |  |  |  |
| CH₃-C≡N                                         | 2.0                            |  |  |  |









## **Chemical Shift**

## Magnetic induction in pi bonds of a(n)

carbon-carbon triple bond shields an acetylenic hydrogen and shifts its signal upfield (to the right) to a smaller  $\delta$  value.

carbon-carbon double bond deshields vinylic hydrogens and shifts their signal downfield (to the left) to a larger  $\delta$  value.

aromatic ring deshields aromatic hydrogens and shifts their signal downfield (to the left) to a yet larger  $\delta$  value. This extra inductive effect is known as the ring current and is seen in a wide variety of aromatic rings.

