

Spectral Problem 1: answer

Formula: one unsaturation ▶ ¹³C NMR: 5 kinds of carbon Carbonyl group (δ 207) • The unsaturation! ¹H NMR: 3 kinds of hydrogen 2H and 3H next to the carbonyl (δ 2.0-2.5) 9 equivalent hydrogen: tert-butyl group!

Spectral problem 2

Spectral Problem 2: answer

	Formula:
	carbon atoms
	IR:
	Alcohol
()H	◆ ¹³ C NMR:
	4 kinds of carbon
	¹ H NMR:
	Integration: ~1:10 (since
	there are 10 H, 1:9)
	oxygen
\checkmark	 Only one C₄H₁₀O alcohol isomer with 4 kinds of carbon and a single
	hydrogen geminal to oxygen!

Spectral problem 3: MS

MASS SPECTRUM 100.-56 80.-84 41 Rel. Abundance 60.-40.-27 20.-0.-100. 80. 20. 40. 60. 0. m/z

Spectral problem 3: MS interpretation

Molecular ion: 84
Possible formulas: C₆H₁₂, C₅H₈O, C₄H₄O₂, C₄H₈N₂

Base peak: 56 (M-28)
28 is C₂H₄, CH₂N, or CO
C₂H₄ is most likely

Spectral problem3: IR/NMR

-0.3 -0.4 -0.5 -0.6 -0.7

-0.8 -0.9 -1.0

Spectral Problem 3: answer IR: No multiple bonds; no OH or NH NMR: One kind of H, one kind of C: high symmetry Chemical shifts indicate no C-C multiple bonds and no electronegative groups (nitrogen or oxygen) Formulas: C₆H₁₂: only reasonable formula with no N or O C₆H₁₂: one point of unsaturation = ring **Only one 6-C ring with only** one kind of carbon!

Spectral problem 4: MS

Spectral problem 4: MS interpretation

Molecular ion: 100

C₇H₁₆, C₆H₁₂O, C₅H₈O₂, C₅H₁₀N₂, etc.

Only other large peaks: 59 and 41

59: M - 41! C₄H₁₁⁺ or C₃H₇O⁺ or C₂H₃O₂⁺
41: C₃H₅⁺ (allyl cation)

Spectral problem 4: IR/NMR

Spectral Problem 4: answer IR: C=O and C=C, but no OH ¹³C NMR: 5 kinds of C: 2 saturated, 3 unsaturated C=O is an ester (δ 169) Saturated C-O (δ 51) ¹H NMR: 4 kinds of H: two vinylic, two methyl Methyl group on O (δ 3.8) Methyl group on C=C (δ 2.0) No splitting of methyl peaks Formulas:

 $C_5H_8O_2$ is only one with two oxygen, five carbon

Spectral problem 5: MS

Spectral problem 5: MS
 interpretation
 Molecular ion: 118

 Possible formulas: C₉H₁₀, C₈H₆O, C₆H₁₄O₂

 Base peak: 117

 Easy loss of one H; a number of functionalities (benzylic H, allyl H, aldehyde H are all easily lost

from the molecular radical cation)

Spectral problem 5: IR/NMR

