

Interpreting NMR spectra

Alkynes:

Terminal alkynes appear between ¹H δ 2-3.

Alkyne carbons appear between δ 60-100. Nitrile (C=N) carbons appear downfield, δ 100-120.

◆ Aromatic Compounds:

Hydrogens attached to an aromatic ring appear downfield of vinylic protons, typically between δ 6.5 and 8.

Aromatic carbon atoms are almost always found between δ 120 and 160.

Interpreting NMR spectra

Alcohols:

the chemical shift of the hydroxyl hydrogen is variable. It normally falls in the range δ 3.0-4.5, but may be as low as δ 0.5.

hydrogens on an sp³ hybridized carbon adjacent to the -OH group are deshielded by the electronwithdawing inductive effect of the oxygen and their signals appear in the range δ 3.3-4.5.

Ethers:

a distinctive feature in the ¹H-NMR spectra of ethers is the chemical shift, δ 3.3-4.5, of hydrogens on carbon attached to the ether oxygen. This also appears in esters.

Interpreting NMR spectra

• Carbonyl ¹³C:

Non-conjugated aldehydes and ketones appear between δ 200 and 215. Conjugated aldehydes and ketones appear upfield, between δ 180 and 200. Acids, esters and amides appear at δ 160-185.

