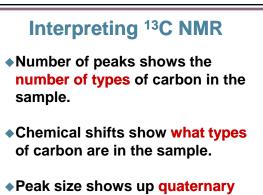
¹³C-NMR Spectroscopy

 Each nonequivalent ¹³C gives a different signal.

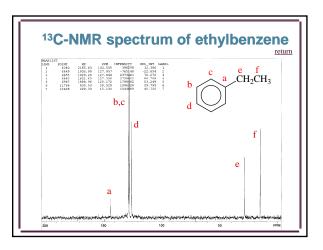
The number of signals equals the number of different carbons in the molecule. Less than one ¹³C per molecule; there is no carbon-carbon coupling.

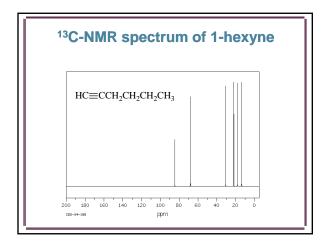
 A ¹³C is split by the ¹H bonded to it according to the (n + 1) rule. Coupling constants of 100-250 Hz are common, which means that there is often significant overlap between signals, and splitting patterns can be very difficult to determine.

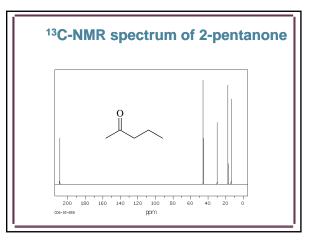

¹³C-NMR Spectroscopy In a hydrogen-decoupled mode, a sample is irradiated with two different radio

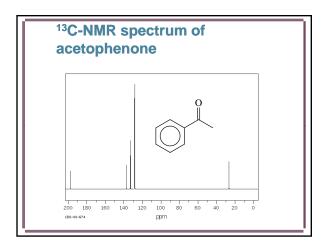
frequencies one to excite all ¹³C nuclei a second is a broad spectrum of frequencies that causes all hydrogens in the molecule to undergo rapid transitions between their nuclear spin states

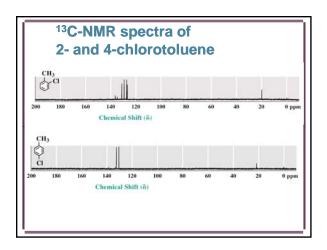
 On the time scale of a ¹³C-NMR spectrum, each hydrogen is in an average or effectively constant nuclear spin state, with the result that ¹H-¹³C spin-spin interactions are not observed; they are decoupled

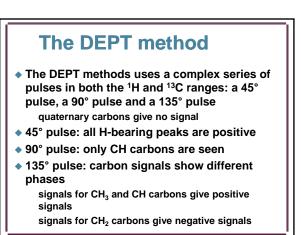

¹³C-NMR and the Nuclear Overhauser Effect

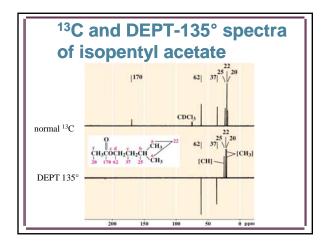

- NOE is an interaction between a target nucleus and its radiatively-saturated neighbors.
- Spin is transferred from the target nucleus to its saturated neighbors, increasing the population of low-spin target nuclei. This increases the signal of the target nucleus.
- As a result, during a standard H-decoupled experiment, ¹³C atoms attached to hydrogens show enhanced signals compared to quaternary ¹³C atoms.




carbons in the sample.


¹³ C NMR chemical shifts			
Type of Carbon	Chemical Shift (δ)	Type of Carbon	Chemical Shift (δ)
RCH3	0-40	C-R	110-160
RCH ₂ R	15-55	1 × *	110 100
R ₃ CH	20-60	Ŷ	
RCH2I	0-40	RCOR	160 - 180
RCH2Br	25-65	P	
RCH2CI	35-80	RCNR2	165 - 180
R ₃ COH	40-80	Q	
R ₃ COR	40-80	к <mark>с</mark> он	175-185
RC=CR	65-85	0 0	
$R_2C = CR_2$	100-150	RCH, RCR	180 - 210







The DEPT method

- In the hydrogen-decoupled mode, information on spin-spin coupling between ¹³C and attached hydrogens is lost
- The Distortionless Enhancement by Polarization Transfer (DEPT) method is an instrumental mode that provides a way to acquire this information
 - DEPT is an NMR technique for distinguishing among ¹³C signals for CH₃, CH₂, CH, and quaternary carbons

Interpreting ¹³C NMR

- Number of peaks shows the number of types of carbon in the sample.
- Chemical shifts show what types of carbon are in the sample.
- Peak size shows up quaternary carbons in the sample.
- DEPT detects primary, secondary, and tertiary carbons