Assign peaks in the ¹³C spectrum of ethyl benzoate

Solution:

- M⁺ = 86 → C₅H₁₀O
 IR at 3400 cm⁻¹ → alcohol
 ¹³C NMR: δ 30.2, 31.9, 61.8, 114.7, 138.4 shows an alkene
 DEPT-90: δ 138.4
 DEPT-135

 Positive peak δ 138.4
 - Negative peaks δ 30.2, 31.9, 61.8, 114.7
 - Shows one CH (vinylic), four CH₂ (one vinylic)

Solution

OH

♦ Isomeric with previous $\rightarrow C_5 H_{10} O$

 ¹³C NMR: δ 9.7, 29.9, 74.4, 114.4, 141.4 shows an alkene with one saturated C next to oxygen
 DEPT-90: δ 74.4, 141.4

DEPT-135

- Positive peaks δ 9.7, 74.4, 141.4
- Negative peaks δ 29.9, 114.4
- Shows two CH (one vinylic, one saturated & bonded to O), one CH₃, two CH₂ (one vinylic)

Solution to Problem 1

Solution to problem 2

- IR:

 C=O at 1750 cm⁻¹
 MS: M⁺=84
 C₆H₁₂; C₅H₈O
 ¹³C NMR:

 C=O at 220 is ketone
 CH₂ at 24, 41 ppm
 - CH₂ at 24, 41 ppm
 - No methyl groups!
 Must be a ring

Solution to problem 3

- C₉H₁₀; C₈H₆O??
- 5 points of unsat.

NMR:

- 1 methyl group
- 1 terminal vinyl
- 3 kinds of CH=(c)
- 2 quaternary C=(c)

Solution to problem 4

